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Abstract. This study aims to assess the Average Treatment Effect (ATE) of receiving special education services on revised Item 

Response Theory (IRT) scaled math achievement test scores. By employing a methodological repertoire comprising linear 

regression with ordinary least squares (OLS), propensity score matching (PSM), Bayesian Additive Regression Trees (BART), 

and Multilayer Perceptron (MLP), we examine the impact of these interventions. Leveraging data from the Early Childhood 

Longitudinal Study Kindergarten 2010-11 cohort (ECLS-K:2011), we systematically analyze the ATE of special education 

services on students' math achievement. The results show that all models yield negative ATE results, suggesting a deleterious 

effect of special education services on fifth-grade math scores. Furthermore, we employ Principal Component Analysis (PCA) to 

corroborate these findings, aligning with outcomes obtained from causal inference and Machine Learning (ML) based methods. 

This research emphasizes the importance of method diversity in educational research and highlights the need for assessments of 

intervention effectiveness to help educational practices and policies. 

Keywords: causal inference, machine learning, early childhood longitudinal study kindergarten (ECLS-K), average treatment 

effect (ATE) 

1. Introduction 

Efforts to access the efficacy of educational interventions are important for informed decision-making in educational policy and 

practice. This paper aims to contribute to this discourse by assessing the Average Treatment Effect (ATE) of receiving special 

education services on the revised Item Response Theory (IRT) scaled math achievement test scores among students. This holds 

significant implications for educational stakeholders, including policymakers, educators, and researchers, as it provides empirical 

insights into the potential impacts of these interventions on student academic outcomes. 

To achieve this goal, we employ various approaches, each offering unique advantages in estimating the ATE. Specifically, we 

use conventional techniques linear regression with ordinary least squares (OLS) alongside more advanced methods including 

propensity score matching (PSM), Bayesian Additive Regression Trees (BART), and Multilayer Perceptron (MLP). These various 

methods allow a comprehensive examination of the relationship between special education services and math achievement, while 

accommodating various data distributions and structural complexities inherent in educational datasets. 

The analysis is based on data sourced from the Early Childhood Longitudinal Study Kindergarten 2010-11 cohort (ECLS-

K:2011), a nationally representative dataset renowned for its longitudinal design and rich socio-demographic variables. Leveraging 

this dataset, we apply the methods to estimate the ATE of special education services on students' math achievement trajectories, 

providing an understanding of the intervention's impact across different subgroups and contexts. 

Our findings reveal consistently negative ATE results across all modeling approaches, indicating a potential adverse effect of 

special education services on fifth-grade math scores. This observation emphasizes the complexity inherent in educational 

interventions and underscores the necessity of critically interrogating their efficacy through robust analysis. To further enhance 

the validity of our findings, we complement our causal inference and machine learning-based analysis with Principal Component 

Analysis (PCA), facilitating a comprehensive examination of the underlying data structure and corroborating our conclusions. 

By showing the relationship between special education services and math achievement, this research contributes to the broader 

discourse on educational equity and the intervention effectiveness. Moreover, it emphasizes the importance of method diversity in 

educational research, advocating for the integration of diverse methods to uncover reveal multifaceted relationships within 
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complex educational datasets. Through these, we try to inform evidence-based decision-making and foster continuous 

improvement in educational practices aimed at promoting student success and equity. 

The remainder of the paper is organized as follows. Section 2 introduces the traditional causal inference and the combination 

of causal inference and machine learning (ML). Section 3 expounds upon the theoretical underpinnings of various methodologies 

employed in estimating the average treatment effect of special education service. Section 4 presents the details of the data ECLS-

K:2011, and the results of the estimation for the ATE of special education service based on different ML-based methods. 

Additionally, we employ Principal Component Analysis (PCA) for factor analysis to corroborate our findings. Section 5 

encapsulates the paper with concluding remarks, highlighting key insights and avenues for future research. 

2. Literature Review 

2.1. Traditional Causal Inference 

Causal inference aims to calculate the influence that a modification in a certain variable will have on a desired outcome. The most 

used models for causal inference are the Rubin Causal Model (RCM) and Causal Diagram [1-6]. 

Fisher and Neyman each started from the standpoint of statisticians and proposed to discuss causal relationships from the 

perspective of potential results and randomness [7,8]. Fisher proposed the concept of "randomized controlled trial" (RCT), while 

Neyman proposed "potential outcomes" and applied them to randomized controlled trials. Rubin further combined the two concepts 

and systematically proposed the theoretical assumptions, core content and reasoning methods of the potential outcome model [9]. 

Rubin defines a causal effect: Intuitively, the causal effect of one treatment (𝑡) over control (𝑐) [10]. We consider a framework 

with 𝑁 individuals indexed by 𝑖. 𝑇𝑖 = 𝑡 if a person receives treatment, and 𝑇𝑖 = 𝑐 if not. 𝑌𝑖(𝑡) denotes person 𝑖’s outcome when 

he receives the active treatment and 𝑌𝑖(𝑐) person 𝑖’s outcome when he receives the control treatment. The causal effect (𝜏) of the 

active treatment the control treatment is given by: 

 𝜏(𝑋𝑖) =  𝑌𝑖(𝑡) −  𝑌𝑖(𝑐) (1) 

While the problem is that we can never observe both Yi(t) and Yi(c) at the same time. Given this, researchers generally 

concentrate on calculating the Average Treatment Effect (ATE) and Average Treatment Effect on the Treated (ATT) that are 

specified over N individuals [11-12]. 

 𝜏𝐴𝑇𝐸 =  𝐸[𝑌(𝑡) − 𝑌(𝑐)] (2) 

 𝜏𝐴𝑇𝑇 = 𝐸[𝑌(𝑡) − 𝑌(𝑐) | 𝑇 = 𝑡 (3) 

Common sample estimands are the Sample Average Treatment Effect (SATE) [13]: 

 𝜏𝐴𝑇�̂� =  
1

𝑁
∑ [𝑌𝑖(𝑡) − 𝑌𝑖(𝑐)]𝑖  (4) 

Another set of average estimands are the Conditional Average Treatment Effect (CATE) [14]. That is, the expected causal 

effect of the active treatment for a subgroup in the population: 

 𝜏𝐶𝐴𝑇𝐸 =  𝐸[𝑌𝑖(𝑡)|𝑋𝑖] −  𝐸[𝑌𝑖(𝑐)|𝑋𝑖] (5) 

Causal models are “mathematical models representing causal relationships within an individual system or population” [15-17]. 

Causal models can enhance research designs by offering precise guidelines for selecting which variables need to be controlled. 

They may make it possible to get some answers from the observational data that is already available without the necessity for an 

interventional investigation. Certain hypothesis cannot be evaluated in the absence of a causal model, which means that certain 

interventional research is unacceptable for moral or practical reasons. To determine if the findings of one research may be applied 

to groups that have not been examined, causal models can be helpful. In certain cases, causal models enable the merging of data 

from several studies to address research concerns that no single data set can address. 

2.2. Machine Learning and Causal Inference 

Machine learning (ML) spans a diverse array of approaches and applications. Traditional Machine Learning is largely concerned 

with prediction. It learns a function from the data that can predict an outcome given a collection of input features. Large datasets 

can be effectively analyzed using it to identify patterns and correlations, but it is not useful for determining the cause-and-effect 

links between variables. Lately, "Supervised" ML and Deep Learning have evolved beyond prediction-focused applications and 

ventured into the realm of causal inference [18-23]. The study of causality may be a significant tool in overcoming some of the 

constraints of correlation-based machine learning systems [23]. Causal inference in machine learning aims at Improving model 

accuracy and interpretability, which may have significant effects on policy, justice, economics, and health, among other domains. 

For instance, Causal inference models may be used to account for data biases, comprehend the consequences of actions and policies, 

and increase the Interpretability and transparency of automated judgments. Classical supervised learning methods includes: (a) 
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regression trees, (b) random forests, (c) boosting, (d) neural networks, and (e) regularized regression (which includes Least 

Absolute Shrinkage and Selection Operator, or "LASSO," ridge, and elastic net). 

3. Methods 

In this article, several methods will be included: (a) Linear regression with ordinary least square (OLS), (b) Propensity score 

matching (PSM, including logistic regression, k-nearest neighbor algorithm), (c) Bayesian Additive Regression Trees (BART), (d) 

Multi-layer perceptron (MLP).  

3.1. OLS 

A linear regression with p explanatory variables has the model: 

 𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗 + 𝜀
𝑝
𝑗=1  (6) 

where Y is the dependent variable, 𝛽0, is the intercept of the model, 𝑋𝑗 corresponds to the j-th explanatory variable of the model 

(j = 1 to p), and 𝜀 is the error term [24]. If 𝜎𝑗
2 = 𝜎2 (j =1 to p), we can get the estimation of 𝛽  by Ordinary Least Square (OLS): 

min
𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗)2𝑝
𝑗=1

𝑛
𝑖=1 . Therefore, we can get the estimation of vector β of the coefficients by �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. The 

vector of the predicted values can be written as follows: 𝑌∗ = 𝑋�̂� = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑌. Otherwise, by the weighted least square, W 

is a matrix with the 𝑤𝑖 =
1

𝜎𝑖
2 weights on its i-th diagonal [25]. The vector β of the coefficients can be estimated by the following 

formula �̂� = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌. The vector of the predicted values can be written as follows: 𝑌∗ = 𝑋�̂� = 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌.  

3.2. PSM 

3.2.1. PSM Procedure 

A Propensity score matching (PSM) is a statistical method used to process data from observational studies [26]. In observational 

research, there are many data biases and confounding variables due to many complex reasons [27]. To reduce the influence of 

these biases and confounding variables, PSM selects individuals from the control group who have the same or similar propensity 

score value as an individual in the treatment group for pairing, to make a reasonable comparison between the experimental group 

and the control group. PSM is defined as the “propensity” of a person belonging to the treatment group. 

 𝑒(𝑥𝑖) = 𝑃𝑟(𝑇𝑖 = 𝑡 | 𝑋 = 𝑥𝑖) (7) 

The general procedure includes: (i) estimate propensity scores (using logistic regression, random forest etc.). (ii) Match each 

participant to one or more nonparticipants on propensity score. (iii) Check that covariates are balanced across treatment and 

comparison groups within strata of the propensity score. (iv) Estimate effects based on new sample [27].  

3.2.2. Logistic Regression 

Logistic regression is a popular classification method, especially when we have binary outcomes, that had been introduced in a 

variety of books and articles [28,29]. The basic idea is the linear regression method is not accurate for classification problem, so 

that we need to use logistic regression to give us prediction. For binary outcome 𝑌 =  {
0 𝑖𝑓 𝑁𝑜
1 𝑖𝑓 𝑌𝑒𝑠

, Logistic regression uses the form: 

Pr(𝑌 = 1|𝑋) =  
𝑒𝛽0+𝛽1𝑋

1+𝑒𝛽0+𝛽1𝑋 and Pr(𝑌 = 0|𝑋) =  
1

1+𝑒𝛽0+𝛽1𝑥 with logit function 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1𝑋. When class K is more than 

two, Pr(𝑌 = 𝑘|𝑋) =  
𝑒

𝛽0𝑘+𝛽1𝑘𝑋1+⋯+𝛽𝑝𝑘𝑋𝑝

∑ 𝑒
𝛽0𝑙+𝛽1𝑙𝑋1+⋯+𝛽𝑝𝑙𝑋𝑝𝐾

𝑙=1

. We can estimate the coefficients by the maximum likelihood estimate (MLE), 

𝐿(𝛽) = ∏
𝑒

𝛽0𝑘+𝛽1𝑘𝑋1+⋯+𝛽𝑝𝑘𝑋𝑝

∑ 𝑒
𝛽0𝑙+𝛽1𝑙𝑋1+⋯+𝛽𝑝𝑙𝑋𝑝𝐾

𝑙=1

𝐾
𝑘=1

  [30]. 

To compute the coefficients, the most popular methods are Newton’s method and quasi-Newton method [31-33]. The basic 

idea is to repeat the process until the results converges: 𝑥𝑛+1 = 𝑥𝑛 − 
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 . In medical trials, for example, many of the outcome 

variables are binary. Logistic regression is useful to compute the Average Treatment Effect 𝜏𝐴𝑇𝐸  in the causal inference. Although 

the average treatment effect cannot be expressed directly in terms of the parameters of the logistic or probit regression model.33 

We can use an indirect method to compute the point estimate for the ATE with a combination of 𝛽0 𝑎𝑛𝑑 𝛽1 , define as: 

𝑙𝑜𝑔𝑖𝑡−1(𝛽0 + 𝛽1)  − 𝑙𝑜𝑔𝑖𝑡−1(𝛽1)= 
𝑒𝛽0+𝛽1𝑋

1+𝑒𝛽0+𝛽1𝑋 - 
𝑒𝛽1𝑋

1+𝑒𝛽1𝑋
  [34]. 
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3.2.3. K-nearest Neighbor Algorithm 

K-nearest neighbor algorithm (KNN) can be used in both regression and classification problems. While in this article, we mainly 

focused on classification [35]. The goal of KNN is to identify the nearest neighbors of a given query point so that we can assign a 

class label to that point [36]. The KNN algorithm works by calculating the distances between the query point and all other points 

in the dataset, typically using Euclidean distance or other distance metrics. Mathematically, the predicted class label 𝑦 for a query 

point 𝑥 can be represented as: 𝑦 = 𝑚𝑜𝑑𝑒𝑙(𝑦1 , 𝑦2, . . . , 𝑦𝑘), where 𝑦𝑖  represents the class label of the 𝑖 th nearest neighbor to the 

query point, and 𝑘  is the number of nearest neighbors to consider (a hyperparameter). The mode function returns the most 

frequently occurring class label among the 𝑘 nearest neighbors.  

3.3. BART 

The Bayesian Additive Regression Trees (BART) model development process creates a predictive framework through the 

amalgamation of multiple individual "regression trees" [37]. Regression trees, first introduced in the 1970s, operate by recursively 

partitioning a set of data into smaller subsets and fitting a constant for each subgroup. However, these individual trees tend to 

exhibit instability and limited predictive accuracy. BART builds upon this foundation by integrating a “gathering of trees” model 

with a regularization prior. This approach entails estimating E(Y|T, X)  using a tree, extracting residuals, and then fitting other trees 

based on the residuals. Such flexibility enables BART to effectively capture interactions and nonlinearities, enhancing its 

predictive performance. The regularization priors, also referred to as "shrinkage" priors, are equipped with parameters that 

minimize the influence of each tree on the final model fit. Notably, when BART generates predictions with high accuracy, it 

becomes instrumental in approximating the average treatment effect by assessing deviations through E(Y|T = t)  −  E(Y|T = c). 

The Bayesian framework inherent in BART culminates in the generation of a posterior distribution through estimation. 

3.4. MLP 

Multi-layer perceptron (MLP) is a supplement of feed forward neural network, which is a fully connected multi-layer neural 

network [38,39]. At the heart of the MLP are its key components: the input layer, hidden layers, and the output layer. Each layer 

has several neurons that retain numbers ranging from 0 to 1, which are known as activations. The activations in one layer determine 

the activations in the following layer, connecting with weighted edges. The input layer receives the input signal to be processed, 

and data flows forward from input to output layer. The output layer in charge of tasks like making predictions of the input or 

categorizing the input into different groups. The key of the MLP is the hidden layers sandwiched between the input and output 

layers, which is set before the procedure. 

Now we show how activations in layer 𝑝 determine the activations in the following layer 𝑝 + 1. Suppose there are n neurons 

on layer 𝑝 and m neurons on layer 𝑝 + 1. For the j-th neurons 𝑎𝑗
𝑝+1

 in the layer 𝑝 + 1, we have 𝑛 edges linked it with all the 

neurons 𝑎𝑖
𝑝
 with weights 𝑤𝑖

𝑝
 (for i from 1 to n). Compute the weighted sum by ∑ 𝑤𝑖

𝑝𝑛
𝑖=1 ∗ 𝑎𝑖

𝑝
− 𝑏 where b is the bias term. Then 

use activation function like sigmoid 𝜎(𝑥) =
1

1+𝑒−𝑥  𝑜𝑟 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) to squish this sum into the range between 0 and 1. 

To get the optimal set of coefficients, backpropagation is a vital training algorithm. It comprises a forward pass, where input data 

produces predictions, and a backward pass, where errors are propagated backward to adjust weights and biases. During the 

backward pass, gradients are calculated, representing the sensitivity of the network's output to changes in its parameters. These 

gradients guide the iterative update of weights and biases using optimization algorithms like gradient descent. The process allows 

the network to learn from errors and improve its performance over multiple training iterations, enabling it to generalize well to 

new data. 

4. Data Analysis 

4.1. Data Description 

In this article, we selected data from the Early Childhood Longitudinal Study Kindergarten 2010-11 cohort (ECLS-K:2011). The 

kindergarten class of 2010-11 cohort is a sample of children followed from kindergarten through the fifth grade, released by the 

National Center for Education Statistics within the Institute of Education Sciences (IES) of the U.S. Department of Education. 

Insights into children's cognitive, social, emotional, and physical development are gleaned from inputs provided by children 

themselves, their families, educators, schools, and caregivers. 

The data are washed from the raw data. The data used in analysis include 7362 individuals, with 429 “treated” subjects 

(receiving Special Education Services) and 6933 controls. The exposure variable (Special Education Services) is a binary variable 

F5SPECS, which F5SPECS = 1 if subjects received treatment, F5SPECS = 0 if not. The outcome variable (Fifth Grade Math 

Score) is continuous, ranging from 50.9 to 170.7. Other relevant variables include six aspects: Demographic, Academic, family 

context, Health, Parent rating of child, which contains 30 variables to measure the child from a variety of aspects. 
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4.2. Model Comparison 

Since we can’t observe a child’s math score both received special education service  and not received, then we need to estimate 

the score .We use four models: Ordinary Least Square regression (OLS), Propensity Score Matching (PSM), Bayesian Additive 

Regression Trees (BART), Multi-layer perceptron (MLP), to calculate the estimate average treatment effect (ATE) of Special 

Education Service on the Fifth Grade Math Score, with data from ECLS-K:2011.  

The training data is the given data above, and the testing data is created by replacing the exposure variable F5SPECS to its 

contradiction, 0 to 1 or 1 to 0. Then, we can get the estimate of outcomes through models. Now we have two columns of outcomes, 

one is the given data, the other is the estimands. To compute ATE, we sum the outcomes that received treatment, and minus the 

summation of outcomes without treatment, then divide by the number of individuals. 

Table 1. Model Comparison 

Estimators ATE R-squared Variance Confidence interval 

OLS -6.172311 0.5478 246.8041 (-6.538261, -5.806361) 

PSM -4.455278 NA 379.2077 (-7.894160, -1.016396) 

BART -3.943622 0.6126 208.5136 (-4.280399, -3.606846) 

MLP -6.969294 NA 138404.6 NA 

The results are shown in Table 1 above. The table show that all models give negative ATE results, which means the Special 

Education Services have negative effect on Fifth Grade Math Score for students. The variance for OLS is the highest. While, for 

ML-based approaches, BART perform better in this scenario. It has a high R squared and meanwhile a lower variance. While PSM 

perform not so well. Since the R-squared of PSM won’t tell much useful information, so we mainly focus on the confidence 

interval, which is also much larger than others. For MLP, it doesn’t perform well under these circumstances. 

4.3. Factor Analysis 

Figure 1 shows the result of correlation matrix. The stronger the positive correlation between the two variables, the higher the 

value. They are most negatively correlated when the value is nearer -1.  

Then we conduct Principal Component Analysis (PCA) to the data. The significance of each principal component is shown in 

figure 2, which may also be used to calculate how many principal components to preserve. 46.7% of the total variance can be 

explained by the first principal component. This suggests that the first principal component alone can capture more than half of 

the data in the collection of 32 variables. Approximately 90% of the variance may be explained by the cumulative percentage of 

Comp.1 to Comp.14. This indicates that the data can be accurately represented by the first fourteen principal components. 

The next step is to find the amount that each variable is represented in each component. The square cosine is represented by a 

quality of representation known as the Cos2. A low value indicates that the variable isn't fully captured by that element, whereas 

a high value suggests an effective representation of the variable within that component. From figure 3, MIRT, outcome, WK5ESL, 

RIRT, are the top four variables with the highest cos2, hence contributing the most to PC1 to PC14. 

The biplot and attributes importance can be combined to create a single biplot, where attributes with similar cos2 scores will 

have similar colors. From figure 5, all the variables grouped together exhibit positive correlations. While variables with negative 

correlations are positioned on opposite sides of the biplot's origin. The farther a variable is from the origin, the more effectively it 

is represented. High cos2 attributes are colored in green: MIRT, outcome, WKSESL and RIRT. Mid cos2 attributes have an orange 

color: P1HMAFB, P1FSTAMP, WKWHITE, S2KMINOR, approachT1, P1SOLVE, C1FMOTOR, ONEPARENT, P1HSEVER, 

P1ATTENI, treatment and P1PRONOU. Finally, low cos2 attributes have a black color: wt_ounces, P1IMPULS, P1EARLY, 

S2KPUPRI, Р1EXPECT, PINUMSIB, PIAGEENT, PIFIRKDG, STEPPARENT, C1GMOTOR, chg14, GENDER, P1SADLON, 

P1DISABL, P1HSCALE, WKCAREPK. 

We can find that Kindergarten Math Score, Reading Score, Approaches to Learning Rating and Fine Motor Skills are positively 

relate to the Fifth Grade Math Score. On the other hand, Attentive, Problem Solving, Verbal Communication and Special Education 

Services have negative effect on the Fifth Grade Math Score, which is inconsistent with common sense [40,41]. However, this 

result matches with what we have got through causal inference and ML-based methods.  
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Figure 1. Correlation Plot 

 

Figure 2. Scree Plot 

 

Figure 3. Contribution of Each Variable 
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Figure 4. Biplot Combined with cos2 

5. Conclusions 

Based on the findings derived from our experimental analysis, several key conclusions emerge. Firstly, our results show a negative 

impact of Special Education Services on Fifth Grade Math Scores. This emphasizes the importance of critically evaluating the 

efficacy of educational interventions, particularly within the domain of special education. 

Moreover, our comparative analysis highlights the efficacy of machine learning (ML)-based methodologies in reducing bias 

when estimating the average treatment effect. Particularly the substantial reduction in bias observed compared to more traditional 

methods. However, despite these advancements, there remains considerable room for improvement within our study. 

Specifically, our analysis reveal that the methods employed do not consistently yield accurate estimates of the average treatment 

effect, with several models exhibiting relatively large variances. Notably, the performance of deep learning methods appears 

suboptimal in this context. Possible explanations for this discrepancy include insufficient sample sizes within the dataset or 

suboptimal configurations of key parameters such as loss function, mini-batch size, and activation functions. 

Considering these limitations, future research endeavors should prioritize addressing these methodological challenges to 

enhance the robustness and generalizability of findings within health services research. Furthermore, it is important to recognize 

the evolving role of machine learning in facilitating causal inference within the realm of health services research. The combination 

of machine learning and causal inference holds immense promise for advancing our understanding of complex phenomena and 

informing evidence-based decision-making in healthcare policy and practice. As such, the integration of these approaches promises 

transformative advances in the field, heralding a new era of data-driven insights and interventions designed to advance health 

equity and improve subject outcomes. 
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